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Abstract. Explicit formulae for the zeta functions of &e zeros of Hahn-Exton and Jackson's 
q-Base1 functions are derived. They can be regarded as spectral sum mles for some discrete 
quantum billiards. 

1. Introduction 

For a Hermitian operator H of an infinite discrete positive spectrum {hi), the spectral zeta 
function is defined as 

Zeta functions play an important role in  the spectral geometry of partial differential operators 
on compact manifolds [I]. Recent interest in these functions is also dtk to the theory of 
quantum billiards [Z, 31 which deals with the Laplace operator on a bounded domain D of 
R2. There are few cases when the zeta functions can be calculated explicitly. among them 
some triangular billiards [4] and the circular billiard (D = disk). For a circular billiard 
(including the Aharonov-Bohm billiards [5-7]), the zeta function is given in terms of the 
positive zeros j". of the Bessel function Jv(z ) :  

m 

< H ( S )  C ! J ( ~ )  = xjGz" . (1) 
n=i  

The explicit formulae for cy(&) for any s = I ,  2, . . . , are the classical results [SI 

etc. The first twelve zeta functions for even-integer arguments are given in [9]  (see 
also [6,7]). Various recursive relations for these functions were obtained in [IO]. Note 
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that Zv(2n) corresponds precisely to the nth moment of the orthogonality measure for the 
Lommel polynomials [I 11. 

The goal of this paper is to generalize these formulac for a discrete version of circular 
billiard. Namely, consider the unit disk with polar coordinates (r, 8). Let us discretize the 
radius r by meshing it into a grid (Ti) = [ I .  q .  q2.  . . .) with 0 < q < I, so that we get a 
set of circles with radii q‘ , i = 0, 1, . . . . On this set, consider the operator 

(3) 
1 1 

Ifs = -;? ITq 4- Tq-L - 23 + - 0 2  
r2 @ 

where TqQ(r, 6’) = Q(qr, e), and 0; is a positive operator acting in 6’. Its form is of no 
importance; for instance, it can be 4,”. or one c a n  also discretize the angle and take for 
0; a difference operator in 6’. Let $ q” + q-” - 2 be an eigenvalue of 0;. Then radial 
parts of the corresponding eigenfunctions of I f q  satisfy the q-difference equation 

(4) 
with zero boundary conditions Y(1) = limn+m Y (4”)  = 0. The solution is given in terms 
of the Hahn-Exton q-Bessel function 

y ( q r )  + * ( q - ’ r )  + [kr2 - (4” + q-”)I * ( r )  = o 

Y ( r )  = .Tu (q””h”Zr; q2)  

defined as 

where 

(a; 410 = 1 (a; 4) .  = (1 - a)(l - aq) , , . (I - aq”-’). 

Thus, the eigenvalues of H, are A,, = q-” j;n(q2). where the jvn(q)  are zeros of &(z;  q ) .  
Therefore, the zeta function of the discrete Hamiltonian (3) is proportional to 

W-Y 4 )  = j;%) (6) 
m 

“=I 

that is a q-generalization of (1). 
Our goal is to derive explicit expressions for the zeta function (6) for any s = 1.2, . . . , 

which generalize equations (2). We shall also consider another (Jackson’s) q-Bessel function 
(in the notation of Ismail 1121) 

and obtain explicit formulae for the zeta functions of its zeros. We shall see that they 
determine the spectrum of a discrete circular billiard with the non-symmetric Hamiltonian 
Tq-iHq. 

Note that the q-Bessel functions and their zeros also arise in the context of some exactly 
solvable lattice models of solid-state physics [13]. 

The key point of our approach is Hadamard’s representations of the q-Bessel functions 
as infinite products over their zeros, which are the new results of this work. After 
these representations are established, further derivations rely on the techniques originally 
developed in [lo] (and recently rediscovered in [ 6 ] )  in the context of the zeros of the 
classical Bessel function. However, a more complicated structure of the q-Bessel functions 
leads to non-trivial nuances. 
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2. The zeta function for the zeros of .Tu(.%; q) 

Let us recall some general properties of the Hahn-Exton q-Bessel function (see, for instance, 
[ 14,151). It can readily be seen that the series (5) satisfies the q-difference equation 

Ju(q-&; 4 )  + J,(qfz; 9.) + [ q - w  - ( q ” / 2 +  q - ” / Z ) ]  J” ( z ;  9 )  = 0 

J d z ;  q )  = q”’2J,(q-’/Zz: 4 )  + ZJv+ i ( z :  4 )  

J”+l(z;q) = Y ~ J ” + i ( q ” * z ; q ) + Z J ” ( Z ; q ) .  (10) 

(8) 

which is equivalent to (4). Two more identities hold true, namely 

(9) 

In the limit q t 1 one gets 

J”((1 - q)z: 4 )  + J”(2Z). (11) 

Equation (8) goes over into the Bessel differential equation, and equations (9), (IO) become 
the well known identities for the Bessel function 

In [16] it is proved that, if v > -1, the zeros of J,(z; q )  are real, simple and there are 
infinitely many of them. That is why in the following we restrict the range of v to v > -1. 

As z-”JV(z;q) is an even function, it suffices to consider its positive zeros jua(q) 
(0 c j,, ( q )  < j*(q)  c . . .) involved in the definition of the zeta function (6). 

Lemma I .  If v > -1, the sum (6) converges for any s > 0. 

This follows from the asymptotics of zeros as n + CO: 

i i ( q )  - q-n.  (13) 
Indeed, in the limit z + 00 the series (5) for z-”J, is in the leading order proportional to 
a series that is summed up by the q-binomial theorem [17]: 

This implies (13). 
Convergence of the zeta function (6) also follows from the fact that z -”J , (z ;  q )  is an 

entire function of zeroth order. Recall that order p of an entire function f (z) = Czoaa,zn 
is defined as [IS] 

In our case of (5),  p = 0. Thus, due to the Hadamard‘s theorem [IS], the following 
representation holds true: 

This is a q-analogue of the expansion of the Bessel function as an infinite product over its 
zeros [8]. 
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Equation (15) is our key point in evaluating the zeta functions. We shall follow the 
simple method of [IO] to derive the identities (2) (see also [6,7]). It is based on the relation 

Differentiating this in e and making use of equation (12), one gets 

Substituting the series (16) for TJz )  leads one to a quadratic recursive relation [6,10] 

t"(2) = +(U + 9-1 

that provides the values (2)  of <,(2n) for any n, 

(n;'n; . . .) be a partition of a positive integer n into parts nj,  i.e. 
We now return to our problem and begin with a generalization of (16). Let X = 

n = nl + .. . +nl  +nz + ... +nz+.  . I 

I ,  rr 
-- 

with 1 < nl c n2 e . . . and ri > 1. We write this as X k n. 

Theorem 2. For J z J  ql/*j.t (4). the following representation holds true: 

with the coefficients related to the zeta functions (6) as follows: 
(i) n = 1.2, . . . 

where the sum runs over all partitions A. = (n;'n; ' .) of n and i enumerates parts of a 
partition. 

(ii) n = 1,2.. . . 

where u(X) = rl + rz +. ' .  
This theorem yields a relationship between the coefficients of the expansion (18) and the 

zeta functions, which is more complicated than the classical case (16). The reason for this 
lies in the fact that the residue of J.+I ( z ;  q ) / J v ( z ;  q)  cannot easily be calculated in terms 
of zeros, as occurs in the classical case where this is a consequence of (12). Nevertheless, 
equation (20) provides a way of evaluating the zeta functions if one knows the h,'s. The 
following generalization of the recurrence (17) allows one to evaluate these coefficients. 
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Theorem 3, The coeficients of ( 1  8) satisfy the recursive relations 

" + I  -1 h i = ( l - g  ) 

and 

Making use of either of equations (21) or (22) yields the following expressions for the 
first few coefficients h,: 

Straightforward algebra yields 

42 (1 + 4"+2) 

(1 -q2)(1 -qu+')2(1 - q u + 2 )  
("(4; 4 )  = 

43 ( 1  + 24"+2 + 2q"+3 + 42"+5 1 
(1-q3)(1  -q"+')3(1 -qy+2)(1 - q " + 3 )  

44 pq"+2 ( 1  + q y + 4 )  ( 1  - q"'3) + ( 1  - q2"+4) (1 + 3q"+3 + 34"+' + 42"+7)) 

( l - q " ( l - q " + '  

5"(& 4)  = 

5 v ( 8 ;  4 )  = ) * ( 1 - q ~ + 2 ) 2 ( l - q ~ + 3 ) ( l - q ~ + 4 )  

(2-3 
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These formulae generalize the identities (2) and go over into them as q t 1. Indeed, due 
to ( 1  1 ) .  in this limit we have 

and 2 j d q ) N -  q)  + jvn 4-' (1 - q)2'5v(2s; 4) -+ WS). 
Taking this limit in (25) yields equations (2). 

2.1. Proof of theorem 2 

Equation (9) yields 

where, due to (15) 

Expanding this about t = 0, we get 

with the same coefficients h. as in (18). 

t = 0 yields 
Consider the function A@) = In H(t) .  Taking the log of (27) and expanding about 

Thus 

where k; 2 1. 
In the last sum over ki, some (or all) ki can be equal. Hence, each set (ki : k l + .  . .+k,? = 

n) is a partition Ax = (ay n: . . .) k n such that rI + rz + . . . = s. On the other hand, each 
such partition gives rise to 

equal terms in the sum over k i .  Therefore, we can write (29) as 
u , = - C s C N ( h , ) { h ~ ~ h ~ ~ . . . ]  " 1  . 

$=I A s h  

This equation, together with (28), yields equation (20). 
Equation (19) is derived by taking the exponent of (29): 
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where the last sum runs over all partitions of n. Expressing a, through the zeta function 
by (28) leads to (19). 

Note that the representation (26) also allows one to get a convenient formula, namely 

which leads to another representation of the coefficients h, through the zeros of J,(z; q): 

The explicit expressions (23) for h. can be regarded as another version of the sum rules for 
the zeros of the q-Bessel function which generalize equations (2). 

2.2. Proof of theorem 3 

Equation (10) follows: 

From equation (9) one gets 

Making use of this formula in equation (3 1) leads one to the relation 
[I - zT,(z; q) ]  [ P T "  (q-'/Zz; 4)  - 21 = q VHT( Y ZI . 4). 

Substituting the series (18) for T, and equating powers of z yields the quadratic 
recurrence (21). 

To get the linear recurrence (22), one can substitute the series (5) for both q-Bessel 
functions in (18) and equate powers of z .  

3. Zeta functions of zeros of J,!V(x; q)  

We have already mentioned that the zeros of Jackson's q-Bessel function (7) determine the 
eigenvalues of a discrete billiard with the Hamiltonian H r )  = TpH,,, where Hq is given 
by (3). Indeed, the eigenfunctions of the radial part of the Hamiltonian H t )  satisfy the 
equation 

Y ( q r )  + Y (q - l r )  - (qv + q-") Y ( r )  + k3r2@(qr) = o (32) 
which is equivalent to a q-difference equation satisfied by the series (7) [12], namely 

so that the solutions to (32) are Y ( r )  = JJ') (Zq-'A'/'r; q2)  and the eigenvalues of H,(" 
are .Iun = (q2 /4) j$  (q'), where the ju.(q) are now the zeros of J;')(z: q). 

The following result is due to Ismail [12]. 
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Theorem 4. All the zeros of z-”J,?)(x; q)  are real and simple for U 
infinitely many of them and their only cluster point is at the infinity. 

-1. There are 

Note that the zeros are eigenvalues of a non-Hermitian operator (32) (as is shown in [19], 

We shall use the same notation for positive zeros of JJz)(z; q)  as for those of the function 
they are eigenvalues of another symmetric operator). 

Jy(z; q)  considered in section 2. 

L e m  5. In the limit n + 00, the zeros of JJz)(z; q )  have the asymptotics 

&q) - 4q-v -a - l  (33) 

so that the series for the zeta function (6) converges for any s > 0. 

Indeed, due to theorem 4, j&) + m as n + 03. In the limit z + 00 the series (7) 
for z-”Jf) is given to leading order by the sum 

where we make use of the triple product identity [17]. The last sum can be neglected as 
z + 00, so that asymptotically the zeros coincide with those of the first factor on the r.h.s. 
of this equation. This yields (33). 

Calculating the limit (14) yields the result that z - ” J r )  is an entire function of zeroth 
order. As it is even, the following representation holds true: 

This representation is analogous to (15) and allows one to proceed further in just the 
same way as we did in the previous section. Thereby, instead of equations (9), (10) one 
has to use the corresponding identities [I21 

”/zJ,’z’(~; q)  + q”+’/’- z Jv+I (2) ( q l / ’ Z :  q )  
2 

J;’) (q’/’z: q )  = q 

J ( 2 )  ( ”’z; q)  = 4 - 9  J z l  (I; q)  - q- v-I/’? p ( q l / z z ;  q ) ,  
“+I 4 

We skip the corresponding calculations and describe only the final results. They are quite 
similar to those we obtained in section 2. 

Theorem 6. For IzI < q’/ ’ jV,(q) we have 

where the coefficients h, are related to the zeta functions (6) of the zeros of J i2 ) ( z ;  q )  
by (19A (20). 
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Theorem 7. The coefficients of (34) satisfy the recursive relations 

n 

(1 - q""") h,+i = ~q"'h,h,+i-, n = 1,2,. . . 
m=l 

and 
(-1)" qn("+n+l)+" (-1)"' @m+u) 

- hn+l-m n = 1,2 ,... . = (4;  41, (4"+'; 41, 
hn+l 

( 4 ;  4).4"+' ( 4 y + ' ;  4),+] m=] 

Making use of these recurrences yields the following expressions for the first few 
coefficients h,: 

p + l  
h2 = 

42 (1 - q"+I )z (1 - q y - )  

q3"+2(1 + q )  h3 = 
43(1 - q y + 1 ) 3 ( 1  -qu+2)(1-qy+3) 

(35) 

44"+3((I+q)( l+qZ)( l  -q"+Z)+q(l-q"+3)] 
44(1 -q"+')4(1 - q y + 2 ) 2 ( l - q u + 3 ) ( 1  - q+)  

h4 = 

Substituting them into equations (20) for the zeta functions gives 

In the limit q t 1 we have [12] 

JW - 412; 4)  + J d z )  

(1  - q P  ~ 2 n ;  4)  + sv(2n) 

i v n ( 4 )  --t (1 - q)i"" 
so that 

q t 1. 
Taking this limit in equations (36) yields the sum rules (2) for the zeros of the Bessel 
function. 
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The analogue of (30) reads 

and the coefficients of (34) can be recast as 

The explicit expressions (35) for h, can also be regarded as sum rules for zeros of Jackson's 
q-Bessel function which generalize equations (2). 

Note that the coefficients h, are closely related to an orthogonality measure da , (x ;  q)  
for the basic analogues of the Lommel polynomials h,,(x; q )  studied in [12]: 

m 

hnu(x; q)hmv(x; 4) dav(x;  4) = W m i .  L 
As is shown in 1121, this measure is even, purely discrete, and 

w p ( d a , + r ( ~ ;  4 ) )  = {l/jvn(q)lZI. 

Thereby (equation (4.10) of [12]) 

In the limit z 4 DO the r.h.s. can be expanded into the series (34). Expanding the 1.h.s. in 
powers of l /z yields 

m 
I w x L - 2  da,(x; q )  = 4q-' (1 - q"") h ,  n = 1.2, .  . . . 

Thus the coefficient h ,  determines the (n - 1)th moment of the orthogonality measure for 
the q-Lommel polynomials, and equation (37) expresses it in terms of the zeros of the 
q-Bessel function. 

4. Bounds for jp , (q)  

The explicit expressions for the zeta functions of the zeros of the q-Bessel functions 
considered provide a simple way to get various bounds for the ground states of the 
corresponding discrete billiards associated with the first zeros jv,(q).  To this end one 
can make use of Euler's estimates 

which follow directly from the definition (6). In the limit n + 03 both the upper and lower 
bounds of (38) converge to j:] (4). 

Consider first Jackson's qBesse1 function J,?(z; q). Substituting expressions (36) into 
equation (38) with n = 1,2 leads one to the following bounds for its first zero: 
(i) n = 1: 
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(ii) n = 2 

where 

A I  = 4 (1 - qy+2) 
1 + 2q - q”+2 - A2 = 

4 3 -  (l q”+’ 13 
q 3 ( 1 - q ~ + 9 3 + ( 1 + q + q z ) ( 1 + 2 q - q ~ + ~ ) ’  

Note that the upper bounds in these formulae improve inequalities for jvl (q) obtained in [ 191 
via a different method. Namely, setting A I  = A2 = 0 in equations (39),(40) leads to the 
upper bounds for the first zero of J,”)(z; q )  given at the end of section 7 of [19]. 

In the case of the Hahn-Exton q-Bessel function, the corresponding bounds are obtained 
from equations (75): 
(i) n = 1: 

(ii) n = 2: 

Increasing n in (38) allows one to improve these bounds still further. 
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